
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Nov 6-7:09 AM
$\mathrm{N}=\{$ Alan, Bill, Cathy, David, Evelyn $\}$

1) How many ways can you select a president?
2) How many ways can you select a president and a secretary?
3) How many ways can you select a president, a secretary and a treasurer if the president must be a female and the other two must be male?
\qquad female and the other two must be male. \qquad
\qquad
Nov 6-7:10 AM

Fundamental Counting Principal:
When a task consists of separate
parts and satisfies the uniformity
criterion, the total number of ways to
complete the task is:
Formula: $n_{1} \times n_{2} \times \ldots n_{k}$

Example:

How many two digit natural numbers are there in our base ten system? \qquad
\qquad
Nov 6-10:12 AM

Example:

Find the number of two digit numbers that do not contain repeating digits.

Nov 6-10:17 AM

\qquad

Nov 6-7:09 AM

Creating an ID

How many ways can you create an ID with two letters followed by three digits?

Solution

There are $26(26)(10)(10)(10)=676,000$ IDs possible.

Nov 6-7:09 AM

\qquad

In some states, license plates have 3 letters followed by 3 digits.

How many possible license plates are there?

Feb 20-8:27 AM
11.2 Continued
For any counting number n, the product of all counting numbers from n down through 1 is called \boldsymbol{n} \qquad , and is denoted $\boldsymbol{n}!$.
\qquad
Nov 6-7:09 AM

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Examples:

Evaluate each expression.
a) 4 !
b) $(4-1)$!
c) $\frac{5!}{3!}$

Solution
a) $4!=4 \cdot 3 \cdot 2 \cdot 1=24$
b) $(4-1)!=3 \cdot 2 \cdot 1=6$
c) $\frac{5!}{3!}=\frac{5 \cdot 4 \cdot 3!}{3!}=5 \cdot 4=20$
© 2008 Pearson Addison-Westey. All rights reserved

Nov 6-7:09 AM

\qquad
Nov 6-7:09 AM

Warm -Up
 1) In some states, license plates have 3 letters followed

by 4 digits. How many possible license plates are there if letters cannot repeat and the first digit cannot be a zero?
\qquad
\qquad
\qquad
2) Determine the number of outcomes for which the sum of rolling 2 dice is less than 5 .
3) a) 7 !
b) $(8-3)$!
c) $8!-3$!
d)

Nov 6-7:09 AM

Arranging Books

How many ways can you line up 6 different books on a shelf?

Solution
The number of ways to arrange 6 distinct objects is $6!=720$.

Nov 6-7:09 AM

The number of distinguishable arrangements of n objects, where one or more subsets consist of lookalikes is given by:
$\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}$.

\qquad
Feb 21-8:27 AM

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Nov 6-7:09 AM

Guidelines on Which Method to Use	
Permutations	Combinations
Number of ways of selecting r items out of n items	
Repetitions are not allowed	
Order is important.	Order is not important.
Arrangements of n items taken r at a time	Subsets of \mathbf{n} items taken r at a time
${ }_{n P r}=\frac{n!}{(n-r)!}$	$n C^{\prime}=\frac{n!}{(n-r)!p!}$
Clue words: arrangement, schedule, order, President, VP, 1st, 2nd	Clue words: group, subset, sample, selection, committee

\qquad
Feb 25-9:21 AM

EXAMPLE - Identify as a Combination or a Permutation.

1. Telephone Number
2. Social Security Number
3. Poker Hand
4. A Committee of 5 chosen from a class of 10 .
5. A combination lock
6. Powerball Numbers
7. License Plate \qquad
\qquad
\qquad
\qquad

Feb 25-9:21 AM

Example: Number of Subsets

Find the number of different subsets of size 3
in the set $\{m, a, t, h, r, o, c, k, s\}$.
Solution
A subset of size 3 must have 3 distinct elements, so repetitions are not allowed. Order is not important.

$$
{ }_{9} C_{3}=\frac{9!}{3!(9-3)!}=\frac{9!}{3!6!}=84
$$

Feb 25-9:21 AM

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Feb 25-9:14 AM

