1. What does " \subseteq " mean?

2. What does " \subset " mean?

Fill in the blanks.

3. $\{B, A, D\}\{B, C, D, F\}$
4. $\{B, C, D\}\{B, C, D\}$

Aug 30-7:51 AM

Intersection of Sets

The \qquad of sets A and B, written $A \cap B$, is the set of elements common to both A and B, or where there is overlap.

Aug 30-7:34 AM

Intersections

Find each intersection.
a) $\{1,3,5,7,9\} \cap\{1,2,3,4,5,6\}$
b) $\{2,4,6\} \cap \varnothing$

Solution
a) $\{1,3,5\}$
b) \varnothing

Aug 30-7:34 AM

Unions

Find each union.
a) $\{1,3,5,7,9\} \cup\{1,2,3,4,5,0\}$
b) $\{2,4,6\} \cup \varnothing$

Solution
a) $\{1,2,3,4,5,6,7,9\}$
b) $\{2,4,6\}$

Difference of Sets

The difference of sets A and B, written $A-B$, is the set of elements belonging to set A and not to set B. This is not the complement, complements are compared to a universal set.

Aug 30-7:34 AM

Ordered Pairs

In the ordered pair $(a, b), a$ is called the first component and b is called the second component. In general $(a, b) \neq(b, a)$.
Two ordered pairs are equal provided $a=b$.

Aug 30-7:34 AM

$$
\begin{aligned}
& U=\{1,2,3,4,5,6,7\} \\
& A=\{1,2,3,4,5,6\} \\
& B=\{2,3,6\} \\
& C=\{3,5,7\}
\end{aligned}
$$

A) Find $A^{\prime}, B^{\prime}, C^{\prime}, A \cup B, A \cap B, A-B, B \cup C, B \cap C, A \cup B \cup C, A \cap B \cap C$
B) T or $F: A \subset U$
C) T or $\mathrm{F}: \mathrm{B} \subset \mathrm{A}$
D) T or $\mathrm{F}: \mathrm{B} \subset \mathrm{C}$

Aug 30-7:49 AM

Cartesian Product of Sets

The Cartesian product of sets A and B can be written, $A \times B$, which represents all possible sets of coordiantes (A, B).
$A=\{1,5,8,12,13\}$
$B=\{1,4,11,15\}$

Aug 30-7:34 AM

Aug 30-7:34 AM

Aug 30-7:34 AM

Aug 30-7:34 AM

Example: Shading Venn Diagrams to Represent Sets

Draw a Venn Diagram to represent the set $\left(A^{\prime} \cap B^{\prime}\right) \cap C$.

Solution

© 2008 Pearson Addison-Wesley. All rights reserved
2-3-18

Aug 30-7:34 AM
De Morgan's Laws

For any sets A and B,
$(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$ and $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$.

