Main Ideas

- Recognize and apply properties of the sides and angles of parallelograms.
- Recognize and apply properties of the diagonals of parallelograms.

6-2 Parallelograms

THEOREMS

6.3	Opposite sides of a parallelogram are congruent. Abbreviation: Opp. sides of \square are \cong.	Examples	
		$\begin{aligned} & \overline{A B} \cong \overline{D C} \\ & \overline{A D} \cong \overline{B C} \end{aligned}$	
6.4	Opposite angles in a parallelogram are congruent. Abbreviation: $O p p \&$ of \square are \cong.	$\begin{aligned} & \angle A \cong \angle C \\ & \angle B \cong \angle D \end{aligned}$	
6.5	Consecutive angles in a parallelogram are supplementary. Abbreviation: Cons. \&s in \square are suppl.	$\begin{aligned} & m \angle A+m \angle B=180 \\ & m \angle B+m \angle C=180 \\ & m \angle C+m \angle D=180 \\ & m \angle D+m \angle A=180 \end{aligned}$	H J
6.6	If a parallelogram has one right angle, it has four right angles. Abbreviation: If \square has 1 rt . \angle, it has 4 rt . L .	$\begin{aligned} m \angle G & =90 \\ m \angle H & =90 \\ m \angle J & =90 \\ m \angle K & =90 \end{aligned}$	

THEOREM 6.7

The diagonals of a parallelogram bisect each other.
Abbreviation: Diag. of \square bisect each other.
Example: $\overline{R Q} \cong \overline{Q T}$ and $\overline{S Q} \cong \overline{Q U}$

6-2 Parallelograms

THEOREM 6.8

Each diagonal of a parallelogram separates the parallelogram into two congruent triangles.
Abbreviation: Diag. separates \square into $2 \cong \Delta s$.
Example: $\triangle A C D \cong \triangle C A B$

THEOREMS Pror		Proving Parallelograms		
		Example		
6.9	If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram. Abbreviation: If both pairs of opp. sides are \cong, then quad. is \square.			
6.10	If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram. Abbreviation: If both pairs of opp. \& are \cong, then quad. is \square.			
6.11	If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram. Abbreviation: If diag. bisect each other, then quad. is \square.			
6.12	If one pair of opposite sides of a quadrilateral is both parallel and congruent, then the quadrilateral is a parallelogram. Abbreviation: If one pair of opp. sides is \\|	and \cong, then the quad. is $a \square$.		

CONCEPT SUMMARY

Tests for a Parallelogram

1. Both pairs of opposite sides are parallel. (Definition)
2. Both pairs of opposite sides are congruent. (Theorem 6.9)
3. Both pairs of opposite angles are congruent. (Theorem 6.10)
4. Diagonals bisect each other. (Theorem 6.11)
5. A pair of opposite sides is both parallel and congruent. (Theorem 6.12)

THEOREM 6.13

If a parallelogram is a rectangle, then the diagonals are congruent.

Abbreviation: If \square is rectangle, diag. are \cong.

KEY CONCEPT		
Words A rectangle is a quadrilateral with four right angles.		
Properties	Examples	
1. Opposite sides are congruent and parallel.	$\overline{A B} \cong \overline{D C} \overline{A B} \\| \overline{D C}$	
$\overline{B C} \cong \overline{A D} \quad \overline{B C} \\| \overline{A D}$		

THEOREM 6.14

If the diagonals of a parallelogram are congruent, then the parallelogram is a rectangle.

Abbreviation: If diagonals of \square are \cong, \square is a rectangle.

THEOREMS			Rhombus
		Examples	
6.15	The diagonals of a rhombus are perpendicular.	$\overline{A C} \perp \overline{B D}$	
6.16	If the diagonals of a parallelogram are perpendicular, then the parallelogram is a rhombus. (Converse of Theorem 6.15)	If $\overline{B D} \perp \overline{A C}$ then $\square A B C D$ is a rhombus.	
6.17	Each diagonal of a rhombus bisects a pair of opposite angles.	$\begin{aligned} & \angle D A C \cong \angle B A C \cong \angle D C A \cong \angle B C A \\ & \angle A B D \cong \angle C B D \cong \angle A D B \cong \angle C D B \end{aligned}$	

CONCEPT SUMMARY

Rhombi

1. A rhombus has all the properties of a parallelogram.
2. All sides are congruent.
3. Diagonals are perpendicular.
4. Diagonals bisect the angles of the rhombus.

Properties of Rhombi and Squares

Squares

1. A square has all the properties of a parallelogram.
2. A square has all the properties of a rectangle.
3. A square has all the properties of a rhombus.
THEOREMS
6.18 Each pair of base angles of an isosceles trapezoid are congruent.
6.19 The diagonals of an isosceles trapezoid are congruent.
$\angle D A B \cong \angle C B A$
$\angle A D C \cong \angle B C D$
$\overline{A C} \cong \overline{B D}$

EXAMPLE Proof of Theorem 6.4

(1) Prove that if a parallelogram has two consecutive sides congruent, it has four sides congruent.

Given: $\square A B C D ; \overline{A D} \cong \overline{A B}$
Prove: $\overline{A D} \cong \overline{A B} \cong \overline{B C} \cong \overline{C D}$

EXAMPLE Proof of Theorem 6.4

(1) Proof:

Statements	Reasons
1. $\square A B C D$	1. Given
2. $\overline{A D} \cong \overline{A B}$	2. Given
3. $\overline{C D} \cong \overline{A B}, \overline{B C} \cong \overline{A D}$	3. Opposite sides of a parallelogram are $\cong . ~$
4. $\overline{A D} \cong \overline{A B} \cong \overline{B C} \cong \overline{C D}$	4. Transitive Property

$\sqrt{\text { cicir Mour progress }}$

(1) Prove that if $A C$ and $B D$ are the diagonals of $\square A B C D$, $\triangle B E C \cong \triangle D E A$ and $\triangle B E A \cong \triangle D E C$.

Given: $\square A B C D$

Prove : $\triangle B E C \cong \triangle D E A$
$\triangle B E A \cong \triangle D E C$

Choose which reason best completes the following proof.

CCHECK Your Progress

(1) Proof:

Statements

1. $\square A B C D$
2. $\overline{B C} \cong \overline{D A}, \overline{A B} \cong \overline{C D}$
3. $\angle A B D \cong \angle C D B, \angle B A C \cong \angle D C A$ $\angle C B D \cong \angle A D B, \angle B C A \cong \angle D A C$
4. $\triangle B E C \cong \triangle D E A, \triangle B E A \cong \triangle D E C$

Reasons

1. Given
2. Opposite sides of a parallelogram are congruent.
3. If $2 \|$ lines are cut by a transversal, alternate interior $\angle \mathrm{s}$ are \cong.
4. \qquad ?
C. SAS
D. AAS

EXAMPIE Write a Proof

(1) Write a 2 column proof:

Given: $\triangle A B D \cong \triangle C D B$
Prove: $A B C D$ is a parallelogram.

Statements

1. $\triangle A B D \cong \triangle C D B$
2. $A B \cong C D$
3. $A D \cong C B$
4. $\therefore A B C D$ is a
parallelogram.

Reasons

1. Given
2. CPCTC
3. CPCTC
4. If both pairs of opposite sides of a quad are congruent, then the quad is parallelogram.
(1) Write a 2 column proof:

Given: $\triangle X V Y \cong \triangle Z V W$ and $\triangle X V W \cong \Delta Z V Y$
Prove: $W X Y Z$ is a parallelogram.

Statements

1. $\Delta X V Y \cong \Delta Z V W$
2. $\Delta X V W \cong \Delta Z V Y$
3. $\mathrm{XV} \cong \mathrm{ZV}$
4. $\mathrm{VW} \cong \mathrm{VY}$
5. V is the midpoint of $X Z$ and WY.
6. Diagonals $X Z$ and $W Y$ bisect each other.
7. $\therefore \mathrm{WXYZ}$ is a parallelogram.

Reasons

1. Given
2. Given
3. CPCTC
4. CPCTC
5. Definition of a Midpoint
6. Definition of Bisector
7. If the diagonals of quadrilateral bisect each other, then the quadrilateral is a parallelogram.

CHECK Your Progress

(3) Which method would prove the quadrilateral is a parallelogram?
A. Both pairs of opp. sides ||.

15

15
B. Both pairs of opp. sides \cong.

0\%
C. Both pairs of opp. \angle 's \cong.
(D.) One pair of opp. sides both || and \cong.

Real-World EXAMPLE Diagonals of a Parallelogram

(3) Kyle is building a barn for his horse. He measures the diagonals of the door opening to make sure that they bisect each other and they are congruent. How does he know that the measure of each corner is 90° ?

Answer: We know that $\overline{A C} \cong \overline{B D}$. A parallelogram with congruent diagonals is a rectangle. Therefore, the corners are 90° angles.

CHECK Your Progress：

（3）Max is building a swimming pool in his backyard．He measures the length and width of the pool so that opposite sides are parallel．He also measures the diagonals of the pool to make sure that they are congruent．How does he know that the measure of each corner is 90 ？
A．Since opp．sides are \｜，STUR must be a rectangle．

B．Since opp．sides are $\cong, S T U R$ must be a rectangle．
C．Since diagonals of the \square are \cong ， STUR must be a rectangle．

D． STUR is not a rectangle．

dentrek Your Progiess

(1) Complete the following proof. Given: $A C D F$ is a rhombus; $\overline{A B} \| \overline{D E}$.

Prove: $\triangle A B G \cong \triangle D E G$

$88 /$ CheckPoint
(1) Statements

1. $A C D F$ is a rhombus and $\overline{A B} \| \overline{D E}$
2. $\angle A G B \cong \angle D G E$
3. $\overline{A G} \cong \overline{D G}$
4. $\angle B A G \cong \angle E D G$
5. $\triangle A B G \cong \triangle D E G$

Reasons

1. Given
2. Vertical Angles Theorem
3. Diagonals of a rhombus bisect each other.
4. Alternate Interior Angles Theorem
5. \qquad ?

EXAMPLE Proof of Theorem 6.19

(1) Write a flow proof.

Given: $K L M N$ is an isosceles trapezoid.

Prove: $\angle L K M \cong \angle M N L$

EXAMPLE Proof of Theorem 6.19

(1) Proof:

C CHECK Your Progress:

(1) Write a flow proof.

Given: $A B C D$ is an isosceles trapezoid.
Prove: $\angle C B D \cong \angle B C A$
(1) Proof:

Which reason best completes the flow proof?
A. Substitution
B. Definition of trapezoid
C. CPCTC
D. Diagonals of an isosceles trapezoid are \cong.

Quadrilaterals

Five-Minute CHECK (over Lesson 6-2)

Standardized Test Practice

(6) Refer to the figure. Which congruence statement is not necessarily true if $W X Y Z$ is a parallelogram?

0\%
(A.) $\overline{W Y} \cong \overline{X Z}$
B. $\overline{W X} \cong \overline{Y Z}$
C. $\angle W \cong \angle Y$
D. $\angle X \cong \angle Z$
$\square \mathrm{A} \square \mathrm{B} \square \mathrm{C} \square \mathrm{D}$
8/8/CheckPoint

Quadrilaterals

Five-Minute CHECK (over Lesson 6-3)
(1) Determine whether the quadrilateral shown in the figure is a parallelogram. Justify your answer.

(A.) Yes; diagonals bisect each other.
B. Yes; both pairs of opposite angles are congruent.
C. No; opposite sides are not congruent.
D. No; diagonals are not congruent.

Quadrilaterals

Five-Minute CHECK (over Lesson 6-3)
(2) Determine whether the quadrilateral shown in the figure is a parallelogram. Justify your answer.

A. Yes; diagonals bisect each other.
B. Yes; both pairs of opposite angles are congruent.
C. No; opposite sides are not congruent.
D. No; diagonals are not congruent.

Quadrilaterals

Five-Minute check (over Lesson 6-3)

Standardized Test Practice

(5) Which set of statements will prove that $L M N O$ shown in the figure is a parallelogram?

A. $\overline{L M} \| \overline{N O}$ and $\overline{L M} \cong \overline{M N}$
(B. $\overline{L O} \| \overline{M N}$ and $\overline{L O} \cong \overline{M N}$
C. $\overline{L M} \cong \overline{L O}$ and $\overline{O N} \cong \overline{M N}$
D. $\overline{L O} \cong \overline{M N}$ and $\overline{L O} \cong \overline{O N}$
$\square \mathbf{A} \square \mathbf{B} \square \mathbf{C} \square \mathbf{D}$
88/CheckPoint

Quadrilaterals

Fivo-Minuite CHECK (over Lesson 6-5)

Standardized Test Practice

(6) What property applies to a square, but not a rhombus?
A. Opposite angles are congruent.
B. Opposite sides are congruent.
C. Diagonals bisect each other.
D. All angles are right angles.

