6-2

Main Ideas

- Recognize and apply properties of the sides and angles of parallelograms.
- Recognize and apply properties of the diagonals of parallelograms.

THEOREMS

6-2

11120112110			
6.3	Opposite sides of a parallelogram are congruent. Abbreviation: <i>Opp. sides of</i>	$\overline{AB} \cong \overline{DC}$ $\overline{AD} \cong \overline{BC}$	es A B P
6.4	$are \cong$. Opposite angles in a parallelogram are congruent. Abbreviation: <i>Opp</i> $▲$ of \square are \cong .	$\angle A \cong \angle C$ $\angle B \cong \angle D$	
6.5	Consecutive angles in a parallelogram are supplementary. Abbreviation: Cons. <u>(s)</u> in are suppl.	$m \angle A + m \angle B = 180$ $m \angle B + m \angle C = 180$ $m \angle C + m \angle D = 180$ $m \angle D + m \angle A = 180$	D C
6.6	If a parallelogram has one right angle, it has four right angles. Abbreviation: If □ has 1 rt. ∠, it has 4 rt. ▲.	$m \angle G = 90$ $m \angle H = 90$ $m \angle J = 90$ $m \angle K = 90$	

Math nline

THEOREM 6.7

6-2

The diagonals of a parallelogram bisect each other.

Example: $\overline{RQ} \cong \overline{QT}$ and $\overline{SQ} \cong \overline{QU}$

Chapter RESOURCES

THEOREM 6.8

6-2

Each diagonal of a parallelogram separates the parallelogram into two congruent triangles. **Abbreviation:** Diag. separates \Box into $2 \cong \Delta s$.

Example: $\triangle ACD \cong \triangle CAB$

Chapter RESOURCES

THEOREMS Prov		ving Parallelograms
		Example
6.9	If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.	
	Abbreviation: If both pairs of opp. sides are \cong , then quad. is \square .	<i>±</i>
6.10	If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram.	p y
	Abbreviation: If both pairs of opp. $▲$ are \cong , then quad. is \square .	
6.11	If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.	
	Abbreviation: If diag. bisect each other, then quad. is \Box .	
6.12	If one pair of opposite sides of a quadrilateral is both parallel and congruent, then the quadrilateral is a parallelogram.	
	Abbreviation: If one pair of opp. sides is \parallel and \cong , then the quad. is a \square .	

Math nline

C.

CONCEPT SUMMARY

6-3

Tests for a Parallelogram

- 1. Both pairs of opposite sides are parallel. (Definition)
- 2. Both pairs of opposite sides are congruent. (Theorem 6.9)
- **3.** Both pairs of opposite angles are congruent. (Theorem 6.10)
- 4. Diagonals bisect each other. (Theorem 6.11)
- 5. A pair of opposite sides is both parallel and congruent. (Theorem 6.12)

THEOREM 6.13

If a parallelogram is a rectangle, then the diagonals are congruent.

Abbreviation: If \square is rectangle, diag. are \cong .

Chapter RESOURCES

Rectangles

6-4

KEY CONCEPT

Rectangle

Words A rectangle is a quadrilateral with four right angles.			
Properties	Examples		
 Opposite sides are congruent and parallel. 	$\overline{\underline{AB}} \cong \overline{\underline{DC}} \qquad \overline{\underline{AB}} \parallel \overline{\underline{DC}} \\ \overline{\underline{BC}} \cong \overline{\underline{AD}} \qquad \overline{\underline{BC}} \parallel \overline{\underline{BC}} \parallel \overline{\underline{AD}}$		
 Opposite angles are congruent. 	$\angle A \cong \angle C$ $\angle B \cong \angle D$	₹ ₹	
 Consecutive angles are supplementary. 	$m \angle A + m \angle B = 180$ $m \angle B + m \angle C = 180$ $m \angle C + m \angle D = 180$ $m \angle D + m \angle A = 180$	+	
 Diagonals are congruent and bisect each other. 	$\overline{AC} \cong \overline{BD}$ $\overline{AC} \text{ and } \overline{BD} \text{ bisect each other.}$		
 All four angles are right angles. 	$m \angle DAB = m \angle BCD =$ $m \angle ABC = m \angle ADC = 90$	2	

Resources A Kerner

THEOREM 6.14

If the diagonals of a parallelogram are congruent, then the parallelogram is a rectangle.

Abbreviation: If diagonals of \Box are \cong , \Box is a rectangle.

THEOREMS

Rhombu			Rnombus
		Examples	
6.15	The diagonals of a rhombus are perpendicular.	$\overline{AC} \perp \overline{BD}$	В
6.16	If the diagonals of a parallelogram are perpendicular, then the parallelogram is a rhombus. (Converse of Theorem 6.15)	If $\overline{BD} \perp \overline{AC}$ then $\Box ABCD$ is a rhombus.	A C C
6.17	Each diagonal of a rhombus bisects a pair of opposite angles.	$\angle DAC \cong \angle BAC \cong \angle DCA \cong \angle BCA$ $\angle ABD \cong \angle CBD \cong \angle ADB \cong \angle CDB$	D

Math Nine Phombus

CONCEPT SUMMARY Properties of Rhombi and Squares Rhombi **Squares** 1. A rhombus has all the properties of 1. A square has all the properties of a a parallelogram. parallelogram. 2. All sides are congruent. 2. A square has all the properties of a rectangle. 3. Diagonals are perpendicular. 3. A square has all the properties of a 4. Diagonals bisect the angles of the rhombus. rhombus.

Trapezoids

THEOREMS

6-6

6.18 Each pair of base angles of an isosceles trapezoid are congruent.

6.19 The diagonals of an isosceles trapezoid are congruent.

Chapter RESOURCES

Proof:

Statements	Reasons
1. <i>□ABCD</i>	1. Given
2. $\overline{AD} \cong \overline{AB}$	2. Given
3. $\overline{CD} \cong \overline{AB}, \overline{BC} \cong \overline{AD}$	 Opposite sides of a parallelogram are ≅.
4. $\overline{AD} \cong \overline{AB} \cong \overline{BC} \cong \overline{CD}$	4. Transitive Property

6-2 Parallelograms	
Proof: Statements	Reasons
1. $\Box ABCD$ 2. $\overline{BC} \cong \overline{DA}, \overline{AB} \cong \overline{CD}$	 Given Opposite sides of a parallelogram are congruent.
3. $\angle ABD \cong \angle CDB, \angle BAC \cong \angle DCA$ $\angle CBD \cong \angle ADB, \angle BCA \cong \angle DAC$	3. If 2 \parallel lines are cut by a transversal, alternate interior \angle s are \cong .
4. $\triangle BEC \cong \triangle DEA, \ \triangle BEA \cong \triangle DEC$ A. SSS B. ASA	4
C. SAS D. AAS	Math RESOURCES

EXAMPLE Write a Proof			
Write a 2 column proof:			
Given: $\triangle ABD \cong \triangle CDB$			
Prove: ABCD is a paralle	logram.		
Statements	Reasons A D		
1. $\triangle ABD \cong \triangle CDB$ 2. $AB \cong CD$ 3. $AD \cong CB$ 4. ∴ $ABCD$ is a parallelogram.	 Given CPCTC CPCTC If both pairs of opposite sides of a quad are congruent, then the quad is parallelogram. 		

Math nline

C.

6-3 Tests for Parallelograms				
View of the second se				
		Prove: <i>WXYZ</i> is a parallel atements	U U	am. asons
	1.	$\Delta XVY \cong \Delta ZVW$	1.	Given
	2.	$\Delta XVW \cong \Delta ZVY$	2.	Given
	3.	$XV \cong ZV$	3.	CPCTC
	4.	$VW \cong VY$	4.	CPCTC
	5.	V is the midpoint of XZ	5.	Definition of a Midpoint
	and WY.	6.	Definition of Bisector	
	6.	Diagonals XZ and WY bisect each other.	7.	If the diagonals of quadrilateral bisect each other, then the quadrilateral is a
	7.	∴WXYZ is a parallelogram.	•	parallelogram.
				Chapter RESOURCES

Rectangles

6-4

Your Progress

- Max is building a swimming pool in his backyard. He measures the length and width of the pool so that opposite sides are parallel. He also measures the diagonals of the pool to make sure that they are congruent. How does he know that the measure of each corner is 90?
 - A. Since opp. sides are ||, *STUR* must be a rectangle.
 - **B.** Since opp. sides are \cong , *STUR* must be a rectangle.
 - C.
- Since diagonals of the \square are \cong , *STUR* must be a rectangle.
- **D.** *STUR* is not a rectangle.

0%

A 🗆 B 🗖 C 🗖 D

hapter

CHECK Your Progress

Statements	Reasons
1. ACDF is a rhombus	1. Given
and $\overline{AB} \overline{DE}$	
2. ∠AGB ≅ ∠DGE	2. Vertical Angles Theorem
3. $\overline{AG} \cong \overline{DG}$	 Diagonals of a rhombus bisect each other.
4. ∠BAG ≅ ∠EDG	4. Alternate Interior Angles Theorem
5. Δ <i>ABG</i> ≅ Δ <i>DEG</i>	5?
	CheckPoint

Chapter RESOURCES

Vlath Nine

Which reason best completes the flow proof?

- A. Substitution
- **B.** Definition of trapezoid
- C. CPCTC
- Diagonals of an isosceles trapezoid are ≅.

Determine whether the quadrilateral shown in the figure is a parallelogram. Justify your answer.

- Yes; diagonals bisect each other.
- B. Yes; both pairs of opposite angles are congruent.
- C. No; opposite sides are not congruent.
- D. No; diagonals are not congruent.

